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F R E E B O A R D  R E G I O N  O F  A C I R C U L A T I N G  

F L U I D I Z E D  B E D  F U R N A C E .  

2. I N T E R A C T I O N  O F  P A R T I C L E S  
( P S E U D O T U R B U L E N C E )  

B. B. R o k h m a n  and A. A. Shraiber UDC 532.529:662.62:66.096.3 

Formulas are obtained for determining the energy generation and dissipation rates of random (turbulent 

and pseudoturbulent) motion of particles due their collisions and the effect of the aerodynamic drag force. 

The averaged force of interparticle interaction, pseudoturbulent transfer coefficients for the "gas" of particles, 

and other quantities are calculated which are necessary to complete the set of equations describing the 
aerodynamics of the pneumatic transport zone of a circulating fluidized bed reactor [1]. 

In the first part of this study [1 ] a set of two-dimensional (axisymmetric) equations of aerodynamics for 

the pneumatic zone of the freeboard region of a circulating fluidized bed (CFB) reactor was obtained. The set 
comprises transfer equations of mass, momentum and kinetic energy of pulsation motion of gas and each fraction 

of char and ash particles. In the following, a method is given for calculation of some quantities that appear in these 
equations. 

1. Averaged Force of Interparticle Collisions Ci. In the calculation of Ci and in the sequel it will be assumed 

for simplicity that the particles are solid homogeneous spheres (with the real particle shape the problem is too 

complicated). Let a collision of particles i and k have taken place. After the collision the velocity of translational 

motion of particle i with be [2 ] 

V I = V i -t- Pki  ( V k  - -  V i )  a t- M k i  [ e .  (Vk - Vii e ,  (1) 

where Mki = Qki - Pki; Pki = 27ki(1 - kT)/7; Qki = 7ki( 1 -- kn); )'ki = mk/(mk + mi). In Eq. (1) the particles are 
assumed not to rotate before the collision because, according to [1 ], different directions of the vectors f~i and f2 k 

are virtually equiprobable and therefore the rotational contribution to the averaged force of the interaction is 

neglegible. Moreover, the pulsation components of the particle velocity before the collision will be neglected because: 
r t 

1) they are much less than the averaged components [1 ] and 2) the vectors V i and Vk can have any direction and 

averaging of the "pulsation" component of the effect of a single collision over all possible directions of the vectors 

will result in a small increment if the direction distribution of V'p is not spherically symmetric and zero otherwise 

(this will be discussed later). As usual, it will be assumed that the midsection of particle i normal to the vector 
(Vk - Vi) is bombarded uniformly by particles k. In order to obtain calculational formulas, the right-hand side of 

Eq. (1) should be averaged over all possible directions of the vector e. The coordinates z, r, ~o connected to the 
reactor will be replaced by the coordinates Z, R, ~o (Fig. 1), where the Z axis is parallel to the vector (V k - Vi) 
lying in the plane zOr due to axial symmetry. Integration of (1) over the midsection of particle i gives 

2n d i ( 1 (6 i+6k) ,  b O C = d s i n O  ) ( Vi~ ) _ Jrd fo dW fo V bdb d = OB = -~ �9 = , 
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and after simple calculations we arrive at 

(AVi) z = (AVi) z cos a ; (AVi) r = - (AVi) Z sin ct ; 

(AVi) Z = 0.5 (Pki + Oki) I V ' k -  Vi I �9 (2) 

Calculating the frequency of impacts according to a geometric scheme of collisions [2 ] and taking relations (2) into 
consideration, we will eventually have 

-6i~ = ~ ,  ski  ( -ak - -ai) ; -6~r = ~ sk~ (-~k - -~i) ; 
k k 

Ski = 
4.5 m i m/c ~-i fl~ (c3 i + c3k) 2 I Vk - Vi I 

3 3 
Jr d i O k (m i + mk) 

E 2 ] 1 -  k n + ff ( 1 -  k 0 . 
(a) 

It should be noted that in [3 ] in a one-dimensional equation of the type of (3) the last term in square brackets was 

omitted, i.e., roughness of the particle surface was neglected. 

2. Generation of Pseudoturbulence in a Single Impact. 

energy gained by particle i in a single collision with particle k. As 

and the rotation of the particles before the collision are neglected. 

Let us calculate the averaged pseudoturbulent 

usual, the pulsation components of the velocity 

It should be borne in mind that ~i << ~i. Then, 

only the averaged longitudinal velocities of the particles should be only considered, i.e., the vectors Vi and V~ are 

parallel to the z axis and the two coordinate systems in Fig. 1 (zr~o and ZR~o) coincide. 

According to (1), the r-th velocity component of particle i after the collision is equal to 

o 

v i = Mla [e.(V k - Vi) ] e r , (4) 

and the components of the vector e are 

e z = sin O ;  e r = cos O s i n  ~ ; e~ = - cos Ocos  ~ .  

As before it will be assumed that the probability that the center of particle k will cross any element of the midsection 

of particle i is proportional only to the area of this element. Then, integration of the square of expression (4) over 

the southern hemisphere of the particle in Fig. 1 gives 

~r/2 d b 2 ( b 2 
((vi)~ _ Jrd fo d7, fo M~ki(-Uk--Ui)2 ~ I 1 - -  --~ s i n 2 ~ p b d b = l  M~ki(-~k--~i)  2 (5) 

It is easy to see that < ( ~ ) z >  = < (v~)Z> (because the problem is symmetric about the Oz axis). It should be noted 

that the averaged transverse velocity <vi> or < ~ >  is zero after the collision. Meanwhile, similarly to (2), the 

average longitudinal velocity of particle i is equal to 

o 

( Ui ) = -ui + (Pki + 0.5 Mki ) ( -Uk -- -Ui)" 

Then the "longitudinal" component of the pseudoturbulent energy gained by particle i is 

~ ~ 1 _ 2 
( ("i - ( "i ))2 ) = ~ M~ki ( ~k - "~) . (6) 

Thus, it is clear from (5) and (6) that generation of pseudoturbulent energy due to the difference of the average 
longitudinal velocities of the colliding particles has spherical symmetry.  Because of this it is possible to suggest the 
hypothesis that the pseudoturbulent pulsations of the particles have spherical symmetry.  Of course, for a regorous 

proof of the hypothesis the equation of transfer of the energy ki of random motion of particles should be replaced 
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Fig. 1. Calculation of the averaged effect of a single collision. 

P 
Fig. 2. Determination of the difference in averaged the longitudinal velocities 

of monodisperse particles. 

by three equations of the components of ki  (however, this would lead to unreasonable complication of the problem, 

in particular, to great difficulties in calculation of the collision frequency, see below), or a precise experiment should 

be carried out, which is beyond the capability of present-day equipment. Therefore, we will confine ourselves to 

the following physical considerations: 1) if the effect of the wall is neglected, there is no reason to suggest that the 

dissipation of the pseudoturbulent energy will not have spherical symmetry,  2) the other terms in the equation of 

transfer of the energy k i [1 ] should not disturb the spherical symmetry of the random motion of the particles.* 

Results (5) and (6) are obtained for uniform bombardment of the midsection of particle i. In reality the 

cross-sectional distribution of the velocities and concentrations of the particles can be nonuniform. It is clear that 

this factor has no effect on < (w~)2> or < (u~ - <u~>)2>. It will be assumed that within the midsection of particle 

i the functions -~k(r) and/~k(r) are linear: 

-Uk (r) = -Uko - A r  ; f lk  (r)  = flkO - B r ,  

where the reference point for r is taken at the center of particle i. Calculations similar to those described above give 

It is most likely that turbulent pulsations of particles do not have spherical symmetry [4 ]. However, under the 
conditions in a CFB the intensity of pseudoturbulent motion is substantially higher that of turbulent motion (this 
will be shown later). This justifies the use of the hypothesis that about the symmetry of the entire random motion 
of the particles is spherical). 
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o = 2 d  
15 flkO [A flkO + B ( -Uko - -ui) ] Mki ; 

~ [ 1 97 (ad)2 ( ) = - + + 

4 1 + 3600/~0 ABd2 ( -ukO - -u i )  - -  (Bd ( -ukO -- Ki))2 . 
225 fl~0 (7) 

Consequently, nonuniformity of the distributions of ~k and/3k leads to a directed shift of particles i along the r 

axis. This effect is usually small, and in the following it will be neglected; however, for a more occurate calculation 

this correction can be included in Eq. (5) of radial motion of the particles [1 ]. Estimate show that under the 

conditions in a CFB the terms in (7) containing A and B are 3 to 5 orders of magnitude smaller than the first term; 
in the following this correction will be neglected. 

3. Calculation of K. Monodisperse Material. In accordance with the above, the following scheme of the 
motion and interaction of the particles will be adopted: 

a) The particles participate in averaged motion with the velocities ~p and ~p and in random notion with the 
characteristic velocity (V-~p2) t'2 -- Vr~p, where (~2pz) ~2 << ~p and the distribution of the directions of the vector 

V'p has spherical symmetry. 

b) The main reasons for collisions are: 1) the difference of the averaged longitudinal velocities of particles 

that arrive at the interaction point A from some points B and C (Fig. 2); 2) The pulsations V'p. It is assumed that 

I B A  I = I C A  I -- L and the distribution of the directions of the vectors BA and CA is equiprobable. Similarly to the 

molecular kinetic theory, it will be assumed that 

L = 6 / (6  V~ tip). (8) 

Furthermore, it should be considered that the vector L connecting the points in coordinate space at which two 
successive impacts of a particle occurred can have a random direction. If the distribution of these directions is 

equiprobable (this suggestion is the most natural) the average projection of the vector L onto the r axis will evidently 

be equal to the ordinate of the center of gravity of a semisphere of radius L that "rests" on the coordinate plane 

zO~o (the center of the sphere is at the coordinate origin. As is known from geometry, this ordinate is equal to L/2 .  

Similarly the projection of the segment BC onto the r axis averaged over all directions of the vectors BA and CA is 

also equal to L/2 .  Then in formulas (5) and (6) 0.5LO-~p/Or should be substituted for ~k - ~i. 

The frequency NE of collisions of monodisperse particles will be calculated in accordance with the scheme 

of the motion adopted. The difference in the averaged longitudinal velocitirs with (8) taken into account gives (see 

[2 l) 

N1 - 2 ~ Or " 
(9) 

The frequency of impacts caused by random motion of the particles (on the analogy with the molecular kinetic 

theory) is equal to 

N 2 = 12 
( lO)  

In order to find Ny from known N1 and Nz, they will be summed "geometrically" with account for the fact that the 
difference in velocities that results in impacts N1 is parallel to the z axis and the directions of the differences in 
random velocities are distributed equiprobably. For definiteness, let N1 > N2. Then Ny is the mean of the length 
of the segment B M  in Fig. 1, where O M  = N1, OB = N2, and the point B can take any position on the sphere. 
Obviously, 
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B M =  ~/N 2 + N 2 -  2NtN 2 s i n O .  (11) 

Integrating (11) over the sphere and considering exactly the same procedure for N1 < N2 (the point M is inside 

the sphere), we will have the final result 

N +N~2/(3N11, N 1 > N2; (12 / Uy 
N 2 +  N~, ( ~ / 3N2, , U 1 _< U 2. 

Thus, the rate of the pseudoturbulent energy generation is NxAkp (Akp is the effect of a single impact), or after 

substitution of (51, (61, and (8): 

Kp - 2304 ~pp Or 2 -7 NE pp/~p. (13) 

It is assumed in [5 ] that the dissipation of turbulent energy in inelastic collisions of particles is proportional 

to Nxkp(1 + kn) 2. Analyzing the simplest case of a central collision (the vector e is parallel to the difference in 

particle velocities), it can easily be seen that this expression includes particle elasticity incorrectly, since actually 
the kinetic energy loss is proportional to fl = (1 - kXn). Therefore, it can be assumed to a first approximation that 

K;* = C 1 ppfl-p kp (1 - k~) N y ,  (14) 

where C1 is a constant to be found from comparison with experiment. However, in the general case roughness of 

the particle surface can also affect energy dissipation in collisions. In order to include the roughness the factor fl 
in (14) is replaced by the expression 

I 2 ( 1 - - k T ) ]  I I + k  n -ff2(1-k~)l + 8 ( l - k O  (15) fz= 1 - k n - -  ~ 

4. Polydisperse Material. In calculating Ki, mutual collisions of particles i and their collisions with particles 

of the other fractions in the flow should be considered: K i = Kit +AKki .  The i-i interaction will be described on 
the basis of notions developed earlier [see Eqs. (91-(151 ]. However, in calculating the effect of a single impact 

and the frequency N1, L should be regarded as the free path between collisions of particles i with all the other 
particles (naturally, this is not the case for N2). In a first approximation, (8) is used for calculating L b u t / ~  and 

6 are replaced by the averaged equivalent particle concentration/3e and their average dimension <6 >. Then fl0 and 

6 in the square brackets in (131 are replaced by/~e and <6>  (in the other quantities the subscript i is substituted 
for p; moreover, relation (9) is transformed to 

NI= /7i01 I ~ [ (16) 

(N2, NF., and K~//* are calculated from formulas similar to (10), (12), (14), (15)). 

The main reason for collisions of particles from different fractions is differences in the averaged longitudinal 

velocities [2 ]. As shown by estimate, under the conditions of a CFB this factor is much more important than particle 

migration to the interaction point (Fig. 2). Meanwhile, the i-k collisions induced by random motion of particles 
from both fractions should be taken into consideration. With the notation 

: -  il, V'ki : ( I V ' k -  Vi i> 

the average relative velocity V'gi of particles i and k in random motion will be calculated. To do this, it will be 
assumed that the absolute values of random velocities of all particles i and k are I Vil = ~ and I V'kl = 
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respectively, with equiprobable distribution of the directions of both vectors in space. Then, it is evident t h a t  V'ki 
can be found similarly to (12): 

,2 

,2 
( 1 7 )  

(If k = i is assumed in (17), then V'u = 1.33VI, while the molecular kinetic theory gives vr2v'i for the average 

relative velocity of two identical molecules. This discrepancy results naturally from the hypothesis on equality of 

the absolute values of velocities adopted here. However, the coefficients (vr2 and 1.33) differ by just 6%, i.e., this 

hypothesis is quite reasonable. Now we can easily find the frequencies of the collisions 

N 1 = Eki-Uki; N 2 = eki V'~i; Eki = 1.5 (6 i + 6k)2/~k 6~-3, (18) 

and (with (5) and (6) in view) the rate of energy generation in the k-i interaction 

= p, L N:2 
[ 1 - k  n - 2 ( 1 -  kO/7  ]2 m~ u~i . 

8 (mi + ink) z 

(19) 

Unlike the case of monodisperse material where determination the total energy lost by both colliding 

particles is sufficient for calculation of/Cp* [see (14), (15) ], in the case of interaction of particles of different sizes 

the energy dissipation must be determined for each of the particles. To simplify the calculations it will be assumed 

that the vectors of particle velocities before the collision V i and Vk are parallel to the z axis (this should not change 
form of the dependence of K~k ~ on kn and kO. The difference in (V~) 2 will be found for the following two cases: 1) 

kn = - 1 ,  k~ = 1 (an absolutely elastic collision of particles with absolutely smooth surfaces, no energy loss); 2) 

kn ;~ - 1 ,  k~ r 1 (there is energy dissipation): 

~ 2 
A (Vi) 2 = ( V  k - Vi) V i Y k i f 3  + ( V  k - V i ) 2 y k i f 4  , 

f 3 = l + k n  7 , f4  --- 2 - l - k  n - (1 - kT) X 

2 1 [ (  1 _ kn)2_ 4 ( 1 -  k0 ( 1 _ k n )  ] • ( 1  - - 6 (1  - k 0  2 - . 

t 

Assuming as before that the directional distribution of the vectors V'i, Vk to be uniform, we have finally 

Kki = C2 Pi fli Ny. Vki [.t'3 ~/ ki kki + f4 Yki kki ],  (20) 

where ~ has the same meaning as V'ki in (17), and Cz is an empirical constant. Thus relations (16)-(20) are a 

solution of the present problem of polydisperse particles. 
5. Additional Remarks. The equation of transfer of the energy ki in [ 1 ] contains the term F~- V~, describing 

the effect of the interphase interaction force. Similarly to [4 ], neglecting the Safmen force here (but not in the 

equations of particle motion), we obtain 

F'i-V I = O.75 ~ i f i g f l i 6 7 1  I V g -  Vii (u'g u I + v'g v' i + W'g wi - 2 ki) . (21) 

i t 

If pulsations of the particle velocity are expressed as ~o i = (Pit + ~olf (~o = u, v, w), it is evident that the correlations 
~Og~O~j should vanish, since turbulent pulsations of the gas velocity and pseudoturbulent pulsations of the particles 

are independent of each other. Consequently, the correlations in (21) include just turbulent effects and can be 
determined in accordance with [4 ]. 

146 



In conclusion, it seems necessary to dwell further on three quantities appearing in the equations of [1 ]. In 

view of the dominating pseudoturbulent motion, the turbulent viscosity of the "gas" of particles is calculated by 

analogy with the molecular kinetic theory: 

= L / 3 .  (22) 

According to [6, 7 ] the radial component of the Safmen force is 

t 6.46 ~ fig)0.5 ( Kg _ ~i) (c3i/2) 2 [ O-ug/Or[ 0.5, Rei ___ 1 ; (23) 
FSi r = 

9.14 (Ai/Rei) 0"5 (~g - ~i)2 (c3i/2)2ffg, 1 < Rei < 40; (24) 

A i =- 0.5c3 i IO-~g/Or I (ug - ~i) -1 

(if Rei > 40, formula (24) is used with Rei = 40). The rate of turbulent energy generation in tracks of rather large 

particles [51 is 

r 0 = 0.12 Z {1 - exp [ -  (Rei/80)21} Pifli  ( ~ g  -- -~i)2/1;i " (25) 
i 

6. Comparison with Reported Results. Expressions (13), (14), and (22) with obtained here will be 

compared with the reported [8-10 ] relations for a viscous "gas" of smooth monodisperse particles and terms in the 

pulsation energy transfer equation (see also [1 ]): 

pp = ~ - ~  pp c3 - ; 

K~ 
: g  

3,2 

= 8 " ~  (1 -- k-n) f l p g ;  

T pp X/ kp ; 
(27) 

(28) 
#p=O.345ppSV~pflpZ'3g; Kp - 3 x / ' ,  2- 

Formulas (26), (27), and (28) were obtained in [8], [9] (here/(o* coincides with (26)), and [10]. In (26)-(28) g 
is a function that depends on ~ and the maximum concen t r a t ion  flmax (in [9, 10] g = [t  (- /~p/f lmax) I/3 ]-1 is 

assumed, and the authors of [8 ] suggested introducing a correction factor of 0.6 for g); gl = (fimax//~p) ~ - 1. Since 
the authors of [8-10] only consider particle collisions caused by their random motion, it is assumed in (13) and 

(14) that N~ = N2; then (13), (14), and (22) are reduced to 

2 
1 �9 1 -@/ ( 1 - k . )  2 .  

# p = ] - ~ p p S X / k ; ;  K p -  768P0 Or ) ' 
(29) 
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3,2- 2 
K~*= 12C lppkp tip ( 1 - k ~ )  

6 

It is clear that relations (29) predict the same dependence of the quantities considered on 6, kp, pp, and 

O-Up~Or ( for K~p*, also on the reduction coefficient kn) as (26)-(28) do. Moreover, these formulas differ among 
themselves in the nature of the effects of concentration and kn [the latter refers only to (26) ]. It should be noted 

here that the results [8-10 ] are obtained for rather dense systems (tip E 0.1), while the present study is concerned 
with gas suspension flows, where /~  < 0.1; this is probably the main reason for the difference in the form of the 

dependence of the parameters on tip. If ~p = 0.1 and k n = -0 .5  are assumed, the numerical factors in formulas 
(26)-(29) for/~p are equal to 0.073, 0.075, 0.034, and 0.056, respectively. Consequently, there is quantitative 
agreement (at least in the order of magnitude) of the results. 

N O T A T I O N  

z, r, 90, longitudinal, radial, and transverse coordinates; V, velocity vector; u, v, w, its projection onto the 

z, r, ~o, axes; e, unit vector directed along the line of collision to the center of particle i; m, particle mass; kn, 4 ,  
reduction coefficients of the normal and tangential velocity components in collision (kn <- 0); Q, angular velocity; 
C, interfraction interaction force; 6, particle size; r ,  true volumetric concentration; k, kinetic energy of random 

motion; L, mean free path of a particle between successive collisions; N, collision frequency; n, countable 
concentration of particles; K = K* - K**, K*, K**, rates of generation and dissipation of the energy of random 
particle motion caused by collisions; p, density; F, force of interphase interaction; ~, aerodynamic drag; v, /~, 
kinematic and dynamic viscosities; T, time of dynamic relaxation; Rei = [ V g -  V i 16yg 1, Reynolds number. 
Subscripts: g, p, refers to gas, particles; i, k, fraction numbers; t, f, turbulent and pseudoturbulent quantities; ', 
pulsation component; - ,  < >, averaged values; ~ parameters of the particle motion after collision. 
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